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3. Preliminaries 

The various relations used in the iterative procedure to be described originate 
either in the theory of elastic wave propagation in a solid or in thermodynamics 
theory. These general relations are presented with brief introductory remarks 
drawn from the two theories and appended only to clarify the material of this 
paper. 

3.1 Relations obtained from the them'y of elast'ic wave propagation 

The elastic constants of a solid are determined by measuring the velocities 
with which elastic waves are propagated along several directions in the solid. 
The number of velocity measurements needed to understand the elastic property 
of the solid depends on the crystallographic class to which it belongs. Christoffel's 
equations (e .g. equation (2)) which are applicable to any crystalline system 
give the relationship between measured velocities and elastic constants. In 
general, for a plane wave propagated in a crystal having direction cosines l, m, n, 
the three possible wave velocities V may be found in terms of the elastic constant 
Opq from the roots of Christoffel's equations. 

where 

All - e V2 A12 A13 

A12 A22 - e V2 A 23 = 0, 

A13 A 23 A33 - e V2 

Aij = l2 01i1j + m2 02i2j + n2 03i3j + l m (01i2} + 02ilj) + 
+ l n (Oli3j + 03i1j) + m n (02;3j + 03i2j) . 

(2) 

(3) 

It follows that e V2 is related to Oij kt in a manner determined by the direction 
in which a wave is propagated. Three different velocities of propagation imply 
that the three displacement vectors associated with these velocities are mutually 
perpendicular and hence independent . Usually the three waves are mixed ; 
one is predominantly longitudinal and the other two are predominantly shear. 
Pure waves may be propagated only in a few special crystallographic directions. 
The location of the pure mode directions in crystals of various sy=etries have 
been investigated exhaustively by Borgnis [4] and Brugger [5]. 

3.2 Thet"lll.odynanl.w,'ela.tions 

These relations serve two purposes: 
(i) To evaluate the pressure derivatives of the specific heat and the linear 

thermal expansions in the three principal directions of the solid at pressure P 
and t emperature T ; and 

(il) To convert the adiabatic quantities into their isothermal counterparts at 
pressure P and temperature T. 
The adiabatic and isothermal elastic compliances are related by 

S~ikt(P, T) - Slikt(P, T) = - (Jii(P, T) (Jkt(P, T) T[Op(P , T) e(P, T)] - l. (4) 

When expressed in our notation the following relation between xS(l, m, n, P , T) 
and XT(l, m, n, P , T) results : 

XT(l , m, n , P , T) = xS(l, m , n , P , T) + LI(l, m , n , P , T) , (5) 
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where 
X(l, m, n, P, T) = (8n + 812 + 813) 12 + (812 + 822 + 823 ) m2 + 

+ (813 + 8 23 + 8:;a) n2 
, (6) 

LJ(l, m, n, P, T) = e(P:~' ~;(~, T) {P(l, 0, 0, P, T) 12 + 
and 

+ P(O, 1, 0, P, T) m2 + P(O, 0, 1, P, T) ·n 2} , (7) 

P(P, T) = P(l, 0, 0, P , T) + P(O, 1,0, P, T) + P(O, 0, 1, P, T) . (8) 

From the definition of isothermal linear compressibility, we have 

XT(l, m, n, P, T) = _ 1 ( 8L(1, m, n, P, T)) 
L(l, m, n, P, T) 8P T 

1 ( 8,1.([, m, n, P, T) ) (9) 
J.(1, m,n, P, T) 8P T · 

Since the suffix J has no significance in the above relation, it has been omitted 
from L(l, m, n, J, P, T). By integrating equation (9) with respect to pressure, 
we obtain 

,1.(1, m, n, P, T) = ,1.(1, Tn , n, PI' T) exp {(P - PI) xT(l, Tn, n, P, T)}, (10) 
\ 

by taking into account definition (9) which implies that XT(l, m, n, P, T) 
remains constant in the range of integration P to Pl. Again the temperature 
derivative of linear compressibility is related to the pressure derivative of the 
linear thermal expansion of a material by 

(8
XT(1, m, n , P, T)) = _ (8P(1, m, n, P, T)) 

8T p 8P T 
(11) 

and the pressure derivative of specific heat may be written as 

. ( 80 p(P, T)) = _ T {p2(P, T) + ( 8P(P, T)) }. 
8P T e(P, T) 8T p 

(12) 

Use of the above set of relations enables one to estimate the values of the elastic 
constants of a solid at high pressure without a priori knowledge of the compres
sibili,ty of the substance. 

4. General Iterative Scheme 

In general the iterative scheme proposed here attempts to obtain self-con
sistent estimates of ,1.(1, m, n , P, T) in the three principal directions , i.e , 
,1.(1,0,0, P, T), ,1.(0, 1,0, P , T) , and ,1.(0, 0, 1, P, T) at pressure P and tempera
ture '1'. The scheme presented below assumes the following: 

(i) The temperature dependence of the linear expansion coefficients are known 
at one atmosphere. 

(ii) The value of specific heat is known as a function of temperature at one 
atmosphere. 


